

Ινστιτούτο Νανοεπιστήμης Νανοτεχνολογίας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Σύνθεση και μελέτη σιδηροηλεκτρικού Hf_{1-x}Zr_xO σε υποστρώματα Ge με εναπόθεση μοριακής δέσμης

Χριστίνα Ζαχαράκη

Επιβλέπων διατριβής: Α. Δημουλάς

Τομέας Φυσικής Στερεάς Κατάστασης-Ημερίδα Υποψήφιων Διδακτόρων 2019

Δομή παρουσίασης

≻Εισαγωγή

≻Παρασκευή TiN/HZO/Ge πυκνωτών (MFS)

- > Μέθοδοι χαρακτηρισμού
- Μετρήσεις πόλωσης
- > Σύνοψη/μελλοντικά σχέδια

Εισαγωγή

HfO₂

χρησιμοπείται σαν διηλεκτρικό πύλης στα τρανζίστορ τεχνολογίας CMOS

πρόσφατα βρέθηκε ότι είναι σιδηροηλεκτρικό υλικό όταν κρυσταλλωθεί στη μη κεντροσυμμετρική ορθορομβική δομή Pbc2₁

γ κραματοποίησή του με Zr ή η νόθευσή του με Si, Ge, Al, κ.α. σταθεροποιεί την ορθορομβική φάση (σιδηροηλεκτρική δομή) ή την τετραγωνική (αντισιδηροηλεκτρική).

- <u>χαμηλή Τ</u>: πιο σταθερή η μονοκλινική φάση
- <u>υψηλή Τ</u> με προσμίξεις: σταθεροποιείται η τετραγωνική

τετραγωνική επέκταση γονοκλινική

στρώμα κάλυψης (συνήθως TiN) εμποδίζει την επέκταση ασκώντας τάση στο πλέγμα

σταθεροποιείται η ορθορομβική (ενδιάμεση φάση)

<u>Εφαρμογές</u>

αυθόρμητη πόλωση ±Ps για αποθήκευση
 δεδομένων (καταστάσεις «0» και «1»)

 ✓ κατασκευή FeFETs (Ferroelectric Field Effect Transistor) χάρη στη συμβατότητα με την τεχνολογία πυριτίου και των σταθερών σιδηροηλεκτρικών ιδιοτήτων σε μικρά πάχη (5-30nm)

 προοπτική για εφαρμογή σε ενσωματωμένες μη πτητικές μνήμες*, χαμηλότερης ισχύος και μεγαλύτερης ταχύτητας (άρα μικρότερης ενέργειας) και μεγαλύτερης ηλεκτρικής αντοχής

*βασικό μέρος στις αναπτυσσόμενες συσκευές IoT (Internet of Things)

<u>Γιατί Ge;</u>

✓ μεγαλύτερη διαφορά συντελεστών θερμικής διαστολής Ge-HZO → Ge συστέλλεται
 γρηγορότερα καθώς ψύχεται → εφελκυστικές τάσεις σταθεροποιούν ορθορομβική φάση

$$\gamma_{HZO} \sim 1 \cdot 10^{-5} \text{ K}^{-1}$$

$$\gamma_{Ge} = 5.9 \cdot 10^{-6} \text{ K}^{-1}$$

$$\delta \gamma = 4.1 \cdot 10^{-6} \text{ K}^{-1}$$

$$\varepsilon \approx + \delta \gamma \cdot \delta T \approx 0.3\%$$

$$\delta T = T_{ann} - T_{room} = 725 \text{ K}$$

✓ HZO/Ge διεπιφάνειες καθαρές, (Hf)GeO_x δεν είναι σταθερό, διασπάται εύκολα σε χαμηλές T (σε αντίθεση με το SiO_x) → δεν παγιδεύονται φορτία → βελτίωση της ηλεκτρικής αντοχής και του παραθύρου μνήμης στα FeFETs

 ✓ Ge ημιαγωγός με μικρό ενεργειακό χάσμα, πολλούς ελεύθερους φορείς → θωρακίζουν τα φορτία πόλωσης →σταθεροποιούν σιδηροηλεκτρικές περιοχές

Παρασκευή MFS πυκνωτών

εξάχνωση Hf και Zr από δύο κανόνια ηλεκτρονίων παρουσία ατομικού οξυγόνου από πηγή πλάσματος (πιο δραστικό από μοριακό οξυγόνο) στους 225°C σε θάλαμο υψηλού κενού

εξάχνωση Τi παρουσία ατομικού N σε RT και γρήγορη θερμική ανόπτηση (RTA) στους 750°C για 20sec

εναπόθεση Ti/Pt επαφών με μάσκα ή οπτική λιθογραφία

διάλυμα NH₄OH/H₂O₂/H₂O

High Resolution Transmission Electron Microscopy (HRTEM)*

ΗΖΟ και ΤΙΝ ομοιόμορφα και συνεχή στρώματα

ακριβής προσδιορισμός t_{HZO} =13nm

HZO πολλυκρυσταλλικά με μέγεθος κόκκων 20-30nm

καθαρή, κρυσταλλική διεπιφάνεια HZO/Ge ----->

ενισχύει την επιθυμητή εφελκυστική τάση κατά την ψύξη

SAED (Selected Area Electron Diffraction) pattern:

ανιχνεύονται κορυφές περίθλασης ορθορομβικής φάσης HZO (111), ενώ μονοκλινικής όχι

^{*}R. Negrea, and L. Pintilie, National Institute for Materials Physics, Romania

Προσδιορισμός πάχους ΗΖΟ

Προσδιορισμός συγκέντρωσης Zr/Hf

^{*}Μ. Αξιώτης, και Α. Λαγογιάννης, Tandem, Δημόκριτος

X-ray Photoelectron Spectroscopy για τον έλεγχο του TiN top electrode

>σχεδόν στοιχειομετρικό (N/Ti ≈ 1.1-1.2)

≻μικρή κορυφή N-O-Ti → θεωρείται ότι έλλειψη οξυγόνου (V_o) στο HZO οφελεί την ορθορομβική φάση

Μετρήσεις πόλωσης

 $I = A \begin{pmatrix} \frac{dP}{dV} & \frac{dV}{dt} & \sigma \cup \mu \mu \\ & \checkmark & \checkmark & \mu \epsilon \eta \\ \rho eak \sigma to E_c & o \rho \theta o \\ \delta \pi o \cup \gamma (v \epsilon t \alpha t) \\ \eta \sigma t \rho \epsilon \psi \eta & \checkmark & \mu \epsilon \eta \\ \tau \eta \varsigma & \alpha t \epsilon \lambda s \\ \pi \delta \lambda \omega \sigma \eta \varsigma & \epsilon \cup v o \\ \sigma t \delta \eta \rho \end{pmatrix}$

✓ βρόχος υστέρησης: πλατύς και συμμετρικός

 ✓ μεγάλα P_r λόγω της επικράτησης της ορθορομβικής φάσης

✓ μεγάλο Ε_c λόγω των μειωμένων
 ατελειών στη διεπιφάνεια (οι ατέλειες
 ευνοούν τη δημιουργία και στρέψη των
 σιδηροηλεκτρικών περιοχών)

(+) αυξημένο παράθυρο μνήμης MW=2 $d_{\rm HZO}$ E_c =4.7V

(-) πιο κοντά στο πεδίο κατάρρευσης (4-5 MV/cm στα HZO)

Μέθοδος Positive Up Negative Down

• διορθωμένες καμπύλες: ιδανική μορφή, φαίνεται ο κορεσμός

• μικρή διόρθωση του P_r (38.5 \rightarrow 33.6 μC/cm²), άρα μικρό ποσοστό παρασιτικών φαινομένων

Μετρήσεις fatigue cycling

Μικρό ή καθόλου wake-up

 ✓ Fatigue μετά από 10³ κύκλους και breakdown 10⁵ στα 2.3 MV/cm (καλό συγκριτικά με βιβλιογραφία)

Για μεγαλύτερα πεδία (3.1 MV/cm)
 σπάει μετά από 1000 κύκλους και η
 καμπύλη υστέρησης «ανοίγει» στα
 αρνητικά V λόγω ρεύματος διαρροής

Σύνοψη

Σύνθεση MFS πυκνωτών σε υποστρώματα Ge με καλή σιδηροηλεκτρική συμπεριφορά:

> συμμετρικός βρόχος υστέρησης και μεγάλη παραμένουσα πόλωση P_r → διευκολύνει την "ανάγνωση" της κατάστασης πόλωσης

≻ μεγάλο συνεκτικό πεδίο → μεγάλο παράθυρο μνήμης

δεν χρειάζεται wake-up

≻καθαρές διεπιφάνειες HZO/Ge → αποφεύγεται η παγίδευση φορτίων → βελτίωση της ηλεκτρικής αντοχής

Μελλοντικά σχέδια

- Εμβάθυνση στην κατανόηση των μηχανισμών στα σιδηροηλεκτρικά ΗΖΟ
- Δοκιμή σε υποστρώματα Ge μικρότερης νόθευσης
- ≻ Κατασκευή FeFET

Y. Goh, and S. Jeon, *Nanotechnology* **29**, 335201 (2018)

Ευχαριστίες

<u>Συμβουλευτική επιτροπή</u>:

Α. Δημουλάς Β. Λυκοδήμος Κ. Σιμσερίδης

Ομάδα στο Εργαστήριο Μοριακής Επιταξίας και Επιστήμης Επιφανειών:

Π. Τσίπας Δ. Τσούτσου Σ. Χαΐτογλου Σ. Φράγκος Ε. Ξενογιαννοπούλου Ι. Hauge

Η εργασία χρηματοδοτείται από το πρόγραμμα Horizon 2020-3eFERRO